$\mathbf{m}=$ meter $=39.37$ inches
$\mathbf{m}=$ meter
$\mathbf{m m}=$ millimeter $=.039$ inches

		Units
$\mathbf{V c}$	Cutting Speed	$\mathbf{m} / \mathbf{m n}$
	Tool Diameter	$\mathbf{m m}$
\mathbf{R}	Tool Radius	$\mathbf{m m}$
$\mathbf{A d}$	Feed Rate per minute	$\mathbf{m m}$
\mathbf{N}	Rotation per minute	$\mathbf{R P M}$
\mathbf{Z}	Number of teeth $/$ flutes	
$\mathbf{A e}$	Maximum depth of cut	$\mathbf{m m}$

BELIN PRECISION TOOLS
 METRTIC FORMULAS
 Recommended cutting \& feed rates for specific materials

- Select [Vc] for specific material to rout/mill - calculate RPM and Feed Rates using Belin formula
- Plunge at $40-60 \%$ [hard materials $20-30 \%$] of the calculated feed rate / avoid tool hitting table in plunge
- Best results are achieved with stable material /proper hold down / no vibration
- Machine rigidity / software / setup / minimal runout [side pressure] - gives best results and longer tool life
Follow Max. Depth of Cut [Ae] - and - Lubrication/Coolant recommendations for best results
The quality, efficiency and performance of Belin tools depend on numerous interdependent factors
 $\Pi \times \mathrm{Dx} \mathrm{N}$

Formulas: $\quad \mathrm{N}=\frac{100 \times 2}{\Pi \times \mathrm{D}} \quad \mathrm{c}=\frac{1000}{10}$
For other tool profiles refer to bottom of catalog pag

Technical Notes and Cutting Formulas

		Units
SFM	Cutting Speed	Feet / mn
D	Tool Diameter	Inches
R	Tool Radius	Inches
IPM	Inches per minute / Feed Rate	Inches / mn
RPM	Revolutions per minute	RPM
Z	Number- Flutes /Teeth	Inches
$\mathbf{A e}$	Maximum depth of cut	Inch

		IPM (Feed rate per minute) by Cutting Edge Diameters - inches			Ae- Max depth of cut each pass	Lubricant/Coolant	Recommended				
				5							
Materials	SFM				Up to 1/8"		$3 / 16$ " to 3/8"	$3 / 8$ " to 1"			
Aluminum Pure	> 1000	.0004xDxZxRPM $\times 25.4$.0008xDxZxRPM $\times 25.4$.001xDxZxRPM x25.4		Ae	Petrol or RGV Swarf soft, sticky	176000	176000	176000	
		R	D	D	$\underline{22000}$			$\underline{00199}$	$\underline{00203}$		
Aluminum Alloy	> 1000	.0004xDxZxRPM $\times 25.4$. $0008 \times$ DxZ \times RPM $\times 25.4$.001xD×Z×RPM $\times 25.4$		Cutting emulsion	33000				
		R	D	D	Ae						
Brass	$490<>1000$.0004xDxZxRPM $\times 25.4$.0008xDxZxRPM x25.4	.001xDxZxRPM x25.4	Ae	Cutting oil emulsion	176000	102000	102000		
		R	D	D			22000	176000	176000		
Bronze- Zinc	$330<>500$.0004×DxZxRPM $\times 25.4$.0008xDxZxRPM $\times 25.4$. $001 \times$ DxZxRPM x25.4	Ae	Cutting oil emulsion	$\underline{33000}$	15000	16000		
		R	D	D			99203				
Materials	SFM	Up to 1/8"	3/16" to 3/8"	3/8" to 1"							
Plastics Bakelite	$160<>330$.0012xDxZxRPM x25.4	.0016xDxZxRPM x25.4	.0018xDxZxRPM x25.4	Ae	Air	12000	13000	13000		
		1.5xR	1.5xD	$1.5 \times \mathrm{D}$			13000	91361	91361		
Plastics - PVC	$330<>700$.0012xDxZxRPM $\times 25.4$.0016xDxZxRPM x25.4	.0018xDxZxRPM x25.4	Ae	Air	$\underline{91361}$	$\underline{94106}$	94106		
		1.5xR	$1.5 \times \mathrm{D}$	1.5xD			94106	$\underline{00196}$	00192		
Plastics - Acetate Plexiglas - Nylon	980 < > 1600	.0012xDxZxRPM $\times 25.4$.0016xDxZxRPM x25.4	.0018xDxZxRPM x25.4	Ae	Air Vaporised water	$\underline{99058}$	43000			
		1.5xR	1.5xD	$1.5 \times \mathrm{D}$							
Materials	SFM	Up to 1/8"	3/16" to 3/8"	$3 / 8{ }^{\prime \prime}$ to 1"							
Wood	$980<>1300$.0004xDxZxRPM $\times 25.4$.0008xDxZxRPM x25.4	. $001 \times$ DxZxRPM $\times 25.4$	Ae	Air					
		1.5xR	$1.5 \times \mathrm{D}$	$1.5 \times \mathrm{D}$							
Materials	SFM	Up to 1/8"	3/16" to 3/8"	$3 / 8$ to 1"							
Stainless steel	300	.00013xDxZxRPM×25.4	.00018xDxZxRPM x25.4	.00018xDxZxRPM $\times 25.4$	Ae	Cutting oil emulsion	102000	102000	102000		
		R	R	R			16000				
Formulas: $\quad \mathrm{RPM}=\frac{\mathrm{SFM}}{0.2618 \times \mathrm{D}}$			$0.262 \times \text { D x RPM }$								

For other tool profiles refer to bottom of catalog page for cutting information.

Follow the CNC machine manufacturer guidelines for setup - alignment - calibration and maintenance schedules. Regular attention to these guidelines will keep your CNC machine in top operating condition. Belin Precision Tools work best in well-maintained CNC machines giving excellent cutting performance and longer tool life.

CNC Rigidity - Setup - machine stability is when material hold down is achieved with no movement and minimal vibration. Also, consider that software programs need to be verified and the spindle(s) aligned and calibrated, creating the optimum working conditions to minimize runout side pressures giving the best cut/edge quality and longer tool life.

Collets - inspect often, especially if you change tools hourly - daily - weekly. Clean and inspect collets at every tool changeover. Replace collets at the first sign of wear. Worn or dirty collets will contribute to shorter tool life and tool breakage.

Plunging the material - harder the material to be routed/milled, the softer you should plunge. Reducing the plunge helps to avoid damaging the tool as it "hits" the material. Consider slower plunge when using small diameter tools, extra long cutting length tools and flatter tipped tools.
Examples:
Plastic/Wood - 40-60\% of the calculated feed rate [IPM]
Aluminum/Non-Ferrous - 35-50\% of the calculated feed rate [IPM]
Steel/Ferrous Metal - 20-30\% of the calculated feed rate [IPM]
Depth of Cut - 'Ae' - important to follow the recommended ' Ae ' listed on the Belin Cutting Formula Chart. Smaller cutting edge diameters and harder material being routed/milled require the depth of cut ' $A e^{\prime}$ be reduced. Exceeding the recommended ' $A e^{\prime}$ can contribute to less than optimal edge quality, shorter tool life and tool breakage.
Examples:
1/8" CED - rout/mill aluminum - 'Ae' R- radius = 1/16" 'Ae' per pass/cut
1/4" CED - rout/mill steel/ferrous metal - 'Ae' R- radius = 1/8" 'Ae' per pass/cut
3/16" CED - rout/mill aluminum - 'Ae' D- diameter = 3/16" 'Ae' per pass/cut
$1 / 8 "$ CED - rout/mill plastic/wood - 'Ae'1.5 x R- radius $=3 / 16$ " 'Ae' per pass/cut
$1 / 4$ " CED - rout/mill plastic/wood - 'Ae'1.5 x D- diameter- = 3/8" 'Ae' per pass/cut
Lubricant - Coolant - follow recommendation on the Belin Cutting Formula Chart for safe CNC production. Routing - Milling without recommended lubricant-coolant will contribute to shorter tool life, less than optimum edge quality and tool breakage.
Problems to consider when lubricant - coolant is not used:

* Contributes to weld back when routing - milling most plastic materials
* Excessive heat builds up of when routing - milling non-ferrous and ferrous metal creating an unsafe working environment and potential fire hazard.

SFM listed by material type on the Belin Cutting Formula Chart. Calculate RPM by multiplying .262* x CED $=.0000$ (listed below) that result is then divided into SFM which = RPM
*[Pi (3.14) divided by $12=.262$ rounded]

$1 / 16-.063 \times .262=.0165$	$9 / 16-.563 \times .262=.1475$
$1 / 8-.125 \times .262=.0328$	$5 / 8-.625 \times .262=.1638$
$3 / 16-.188 \times .262=.0493$	$11 / 16-.688 \times .262=.1803$
$1 / 4-.250 \times .262=.0655$	$3 / 4-.750 \times .262=.1965$
$5 / 16-.313 \times .262=.0820$	$13 / 16-.813 \times .262=.2130$
$3 / 8-.375 \times .262=.0983$	$7 / 8-.875 \times .262=.2293$
$7 / 16-.438 \times .262=.1148$	$15 / 16-.938 \times .262=.2458$
$1 / 2-.500 \times .262=.1310$	$1 / 1$

DECIMAL / METRIC CONVERTER

Inch		mm	Inch		mm
$1 / 64$.015	0.396	$33 / 64$.515	13.096
$1 / 32$.031	0.793	$17 / 32$.531	13.493
$3 / 64$.046	1.190	$35 / 64$.546	13.890
$1 / 16$.062	1.587	$9 / 16$.562	14.287
$5 / 64$.078	1.984	$37 / 64$.578	14.684
$3 / 32$.093	2.381	$19 / 32$.593	15.081
$7 / 64$.109	2.778	$39 / 64$.609	15.478
$1 / 8$.125	3.175	$5 / 8$.625	15.875
$9 / 64$.140	3.571	$41 / 64$.640	16.271
$5 / 32$.156	3.968	$21 / 32$.656	16.668
$11 / 64$.171	4.365	$43 / 64$.671	17.065
$3 / 16$.187	4.762	$11 / 16$.687	17.462
$13 / 64$.203	5.159	45364	.703	17.859
$7 / 32$.218	5.556	$23 / 32$.718	18.256
$15 / 64$.234	5.953	$47 / 64$.734	18.653
$1 / 4$.250	6.350	$3 / 4$.750	19.050
$17 / 64$.265	6.746	49964	.765	19.446
$9 / 32$.281	7.143	$25 / 32$.781	19.843
$19 / 64$.296	7.540	$51 / 64$.796	20.240
$5 / 16$.312	7.937	$13 / 16$.812	20.637
$21 / 64$.328	8.334	$53 / 64$.828	21.034
$11 / 32$.343	8.731	$27 / 32$.843	21.431
$23 / 64$.359	9.123	$55 / 64$.859	21.828
$3 / 8$.375	9.525	$7 / 8$.875	22.225
$25 / 64$.390	9.921	$57 / 64$.890	22.621
$13 / 32$.406	10.318	$29 / 32$.906	23.018
$27 / 64$.421	10.715	$59 / 64$.921	23.415
$7 / 16$.437	11.112	$15 / 16$.937	23.812
$29 / 64$.453	11.509	$61 / 64$.953	24.209
$15 / 32$.468	11.906	$31 / 32$.968	24.606
$31 / 64$.484	12.303	$63 / 64$.984	25.003
$1 / 2$.500	12.700	$1 / 1$	1.000	25.400

Examples of RPM calculated for:

ALUMINUM - SFM 1000
Material to be routed - milled - Aluminum - SFM 1000
Formula $.262 \times$ CED [Cutting Edge Diameter] $.262 \times 1 / 4$ " [.250] $=.0655$
SFM -1000 divided by $.0655=15,267$ RPM
PLASTIC/NOOD - SFM - select by material type - SFM range 160 to 1600
Material to be routed - milled - example Plexiglas - 1200 SFM
Material to be routed - milled - example PVC - 600 SFM
Material to be routed - milled - example Hardwood - 980 SFM
Formula $.262 \times$ CED [Cutting Edge Diameter] $.262 \times 3 / 16 "[.188]=.0493$
SFM - 1200 divided by $.0493=24,340$ RPM for Plexiglas
SFM - 600 divided by $.0493=12,170$ RPM for PVC
SFM - 980 divided by $.0493=19,880$ RPM for Hardwood

STEEL/FERROUS METAL - SFM 300

Material to be routed - milled - Stainless Steel - SFM 300
Formula $.262 \times$ CED [Cutting Edge Diameter] $.262 \times 3 / 16$ " [.188] = . 0493
SFM - 300 divided by $.0493=6085$ RPM

Example 1:

Material to be routed - milled - Aluminum - SFM is 1000
Belin Tool \# 33635-1/4" CED
$.262 \times .250=.0655$
SFM 1000 divided by $.0655=15,267$ RPM
Belin Cutting Formula for Aluminum - $1 / 4$ " CED
$.0008 \times .250 \times 1 \times 15,267 \times 25.4=77{ }^{\prime \prime}$ - IPM Feed Rate
Ae - max depth of cut $D-1 / 4^{\prime \prime}$ each pass
Lubricant/Coolant - recommended for best results and longer tool life

Example 2:

Material to be routed - milled - Stainless Steel - SFM is 300
Belin Tool \# 102476-3/16" CED
$.262 \times .188=.0493$
SFM 300 divided by $.0493=6,085$ RPM
Belin Cutting Formula for Stainless Steel - 3/16 " CED
$.00018 \times .188 \times 3 \times 6,085 \times 25.4=15 / 16$ " - IPM Feed Rate
Ae - max depth of cut $R-3 / 32$ " each pass
Lubricant/Coolant - recommended for best results and longer tool life

Example 3:

Material to be routed - milled - Foam board - SFM 980 to 1600
Belin Tool \# 13952A - 3/8" CED - Special XXL CEL 3 3/16"
SFM 1600 divided by $.0983=16,275$ RPM
Belin Cutting Formula - ** Reduce RPM \& IPM by 30-50\% **
$.0018 \times .375 \times 1 \times 16,275 \times 25.4=279$ " - IPM Feed Rate
** REDUCE RPM \& IPM **
Reduced by $30 \%-$ RPM $=11,393$ - IPM $=195$ inches per minute
Reduced by $40 \%-$ RPM $=9,765-$ IPM $=167$ inches per minute
Reduced by $50 \%-$ RPM $=8,138-$ IPM $=140$ inches per minute
\#13952A- 3/8" designed for Routing/Milling 2"- 3" Foam Board Material ONLY.
\#13635B-1/4" designed for Routing/Milling 1 1/2" - 2" Foam Board Material ONLY.
Belin strongly recommends reducing RPM and Feed Rate [IPM] by 30-50\% to avoid tool
breakage due to extra long cutting length [XXL CEL].
Ae - max depth of cut - 3"- \#13952A FOAM ONLY - 2" - \#13635B FOAM ONLY
Lubricant/Coolant recommended for best results and longer tool life

Example 4:

Material to be routed - milled - Plastic -Acetate - SFM is 980 to 1600
Belin Tool \# 13476 - 3/16" CED
$.262 \times .188=.0493$
SFM 1400 divided by $.0493=28,397$ RPM
Belin Cutting Formula for Plastic - Acetate - SFM 1400
$.0016 \times .188 \times 1 \times 28,397 \times 25.4=217^{\prime \prime}-$ IPM Feed Rate
Ae - max depth of cut $1.5 \times D-9 / 32$ " each pass
Lubricant/Coolant - recommended for best results and longer tool life
*When using different RPM than Cutting Formula *
When the router spindle RPM is higher or lower, or you prefer a specific RPM, this will adjust feed rates [IPM]. Belin recommends not exceeding the cutting formula RPM and feed rate [IPM] calculation more than 20\%. Best results are when feed rate [IPM] and RPM are in balance allowing the tool and CNC machine to work together giving the best results.

[^0]
[^0]: *Refer to Example 4:

 * CNC - Spindle RPM $=34,076$ RPM
 *. $0016 \times .188 \times 1 \times 34,076 \times 25.4=260$ " - IPM Feed Rate
 * CNC - Spindle RPM $=18,000$ RPM
 *. $0016 \times .188 \times 1 \times 18,000 \times 25.4=137-138^{\prime \prime}-$ IPM Feed Rate
 * CNC - Spindle RPM $=15,500$ RPM
 * $.0016 \times .188 \times 1 \times 15,500 \times 25.4=118$ " - IPM Feed Rate
 * CNC - Spindle RPM $=12,000$ RPM
 * . 0016 x $.188 \times 1 \times 12,000 \times 25.4=91-92$ " - IPM Feed Rate

